Skip Navigation
Skip to contents

Journal of Powder Materials : Journal of Powder Materials

OPEN ACCESS
SEARCH
Search

Author index

Page Path
HOME > Browse Articles > Author index
Search
Woonghee Choi 2 Articles
Effects of Precursor Co-Precipitation Temperature on the Properties of LiNi1/3Co1/3Mn1/3O2 Powders
Woonghee Choi, Chan Hyoung Kang
J Powder Mater. 2016;23(4):287-296.   Published online August 1, 2016
DOI: https://doi.org/10.4150/KPMI.2016.23.4.287
  • 25 View
  • 0 Download
  • 1 Citations
AbstractAbstract PDF

Ni1/3Co1/3Mn1/3(OH)2 powders have been synthesized in a continuously stirred tank reactor via a co-precipitation reaction between aqueous metal sulfates and NaOH using NH4OH as a chelating agent. The co-precipitation temperature is varied in the range of 30-80°C. Calcination of the prepared precursors with Li2CO3 for 8 h at 1000°C in air results in Li Ni1/3Co1/3Mn1/3O2 powders. Two kinds of obtained powders have been characterized by X-ray diffraction (XRD), scanning electron microscopy, particle size analyzer, and tap density measurements. The co-precipitation temperature does not differentiate the XRD patterns of precursors as well as their final powders. Precursor powders are spherical and dense, consisting of numerous acicular or flaky primary particles. The precursors obtained at 70 and 80°C possess bigger primary particles having more irregular shapes than those at lower temperatures. This is related to the lower tap density measured for the former. The final powders show a similar tendency in terms of primary particle shape and tap density. Electrochemical characterization shows that the initial charge/discharge capacities and cycle life of final powders from the precursors obtained at 70 and 80°C are inferior to those at 50°C. It is concluded that the optimum co-precipitation temperature is around 50°C.

Citations

Citations to this article as recorded by  
  • A kinetic descriptor to optimize Co-precipitation of Nickel-rich cathode precursors for Lithium-ion batteries
    Seon Hwa Lee, Ki Young Kwon, Byeong Kil Choi, Hyun Deog Yoo
    Journal of Electroanalytical Chemistry.2022; 924: 116828.     CrossRef
Characteristics of Ni1/3Co1/3Mn1/3(OH)2 Powders Prepared by Co-Precipitation in Air and Nitrogen Atmospheres
Woonghee Choi, Se-Ryen Park, Chan Hyoung Kang
J Powder Mater. 2016;23(2):136-142.   Published online April 1, 2016
DOI: https://doi.org/10.4150/KPMI.2016.23.2.136
  • 32 View
  • 1 Download
  • 5 Citations
AbstractAbstract PDF

As precursors of cathode materials for lithium ion batteries, Ni1/3Co1/3Mn1/3(OH)2 powders are prepared in a continuously stirred tank reactor via a co-precipitation reaction between aqueous metal sulfates and NaOH in the presence of NH4OH in air or nitrogen ambient. Calcination of the precursors with Li2CO3 for 8 h at 1,000°C in air produces dense spherical cathode materials. The precursors and final powders are characterized by X-ray diffraction (XRD), scanning electron microscopy, particle size analysis, tap density measurement, and thermal gravimetric analysis. The precursor powders obtained in air or nitrogen ambient show XRD patterns identified as Ni1/3Co1/3Mn1/3(OH)2. Regardless of the atmosphere, the final powders exhibit the XRD patterns of LiNi1/3Co1/3Mn1/3O2 (NCM). The precursor powders obtained in air have larger particle size and lower tap density than those obtained in nitrogen ambient. NCM powders show similar tendencies in terms of particle size and tap density. Electrochemical characterization is performed after fabricating a coin cell using NCM as the cathode and Li metal as the anode. The NCM powders from the precursors obtained in air and those from the precursors obtained in nitrogen have similar initial charge/discharge capacities and cycle life. In conclusion, the powders co-precipitated in air can be utilized as precursor materials, replacing those synthesized in the presence of nitrogen injection, which is the usual industrial practice.

Citations

Citations to this article as recorded by  
  • Stabilization of High Nickel Cathode Materials with Core-Shell Structure via Co-precipitation Method
    Minjeong Kim, Soonhyun Hong, Heongkwon Jeon, Jahun Koo, Heesang Lee, Gyuseok Choi, Chunjoong Kim
    Korean Journal of Materials Research.2022; 32(4): 216.     CrossRef
  • Spherical agglomeration of nickel-manganese-cobalt hydroxide in turbulent Batchelor vortex flow
    Xiaotong Sun, Jinsoo Kim, Woo-Sik Kim
    Chemical Engineering Journal.2021; 421: 129924.     CrossRef
  • Design strategies for development of nickel-rich ternary lithium-ion battery
    Kyu Hwan Choi, Xuyan Liu, Xiaohong Ding, Qiang Li
    Ionics.2020; 26(3): 1063.     CrossRef
  • Effect of Single and Dual Doping of Rare Earth Metal Ce and Nd Elements on Electrochemical Properties of LiNi0.83 Co0.11Mn0.06O2 Cathode Lithium-ion Battery Material
    Yoo-Young Kim, Jong-Keun Ha, Kwon-Koo Cho
    Journal of Korean Powder Metallurgy Institute.2019; 26(1): 49.     CrossRef
  • Effects of Precursor Co-Precipitation Temperature on the Properties of LiNi1/3Co1/3Mn1/3O2 Powders
    Woonghee Choi, Chan Hyoung Kang
    Journal of Korean Powder Metallurgy Institute.2016; 23(4): 287.     CrossRef

Journal of Powder Materials : Journal of Powder Materials